ISI BANGALORE

Algebra I

100 Points

Notes.

(a) Justify all your steps. You may use any result proved in class unless you have been asked to prove the same.

(b) \mathbb{N} = natural numbers, \mathbb{Z} = integers, \mathbb{Q} = rational numbers, \mathbb{R} = real numbers, \mathbb{C} = complex numbers.

(c) \mathbb{Z}_n = the set of integers modulo n, $(\mathbb{Z}_n)^{\times}$ = the set of those integers in \mathbb{Z}_n that are coprime to n.

1. [10 points] How many different equivalence relations can be defined on a set of 5 elements?

2. [15 points] Find the gcd of a = 1761, b = 1567 and write it in the form ax + by for suitable integers x, y.

3. [15 points] Let $(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +)$ denote the additive groups of integers, rational numbers and real numbers respectively. Let (G, \cdot) denote the multiplicative subgroup of (\mathbb{C}^*, \cdot) consisting of the various roots of unity, i.e., $G = \{z \in \mathbb{C}^* \mid z^n = 1 \text{ for some } n > 0\}$. Prove that none of these 4 groups are isomorphic to each other.

4. [15 points] Prove or disprove using an example: If G is a group, then the function $f: G \to G$ given by $f(x) = x^{-1}$ is an isomorphism.

5. [15 points] Prove that the multiplicative group $((\mathbb{Z}_{14})^{\times}, \cdot)$ is isomorphic to the additive group $(\mathbb{Z}_6, +)$.

6. [15 points] Prove that S_n is generated by its 2-cycles.

7. [15 points] Suppose x, y are elements of a group G with $xy = y^a x$ for some integer a > 0. If $x^b = e$ for integer b > 0, prove that $y^{a^b-1} = e$.